Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model
نویسندگان
چکیده
Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses.
منابع مشابه
A Bayesian Reformulation of the Extended Drift-Diffusion Model in Perceptual Decision Making
Perceptual decision making can be described as a process of accumulating evidence to a bound which has been formalized within drift-diffusion models (DDMs). Recently, an equivalent Bayesian model has been proposed. In contrast to standard DDMs, this Bayesian model directly links information in the stimulus to the decision process. Here, we extend this Bayesian model further and allow inter-tria...
متن کاملPutting it all together 1 Putting
Ratcliff, Gomez and McKoon (2004) suggested much of what goes on in lexical decision is attributable to decision processes, and may not be particularly informative about word recognition. They proposed that lexical decision should be characterized by a decision process, taking the form of a drift-diffusion model (Ratcliff, 1978), which operates on the output of lexical model. The present paper ...
متن کاملBuilding a maintenance policy through a multi-criterion decision-making model
A major competitive advantage of production and service systems is establishing a proper maintenance policy. Therefore, maintenance managers should make maintenance decisions that best fit their systems. Multi-criterion decision-making methods can take into account a number of aspects associated with the competitiveness factors of a system. This paper presents a multi-criterio...
متن کاملHDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python
The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and o...
متن کاملAre Accuracy and Reaction Time Affected via Different Processes?
A recent study by van Ede et al. (2012) shows that the accuracy and reaction time in humans of tactile perceptual decisions are affected by an attentional cue via distinct cognitive and neural processes. These results are controversial as they undermine the notion that accuracy and reaction time are influenced by the same latent process that underlie the decision process. Typically, accumulatio...
متن کامل